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TREE GRADES USING TREE- AND STAND- LEVEL DATA

Jeffrey P. Prestemon1

Abstract: Log prices can vary significantly by grade, with grade 1 logs often many times the value
of grade 3 logs. Because log grades and tree grades are closely linked, a model that predicts tree
grades based on tree and stand variables might be useful for predicting stand values. The model could
then be used in modeling aggregate supply or in economic optimization. I estimated grade models for
ten groups of species found in the southern Appalachians. Data on several thousand trees and stands
were acquired from the USDA Forest Service’s Eastwide  Database. Four measures of data fitness
were described and applied to the models estimated. These measures indicated that the models did
better at predicting than naive alternatives (e.g., using sample proportions). Substantial unexplained
variation, however, remained, and this fact raises some methodological issues regarding maximum
likelihood estimation and the efftcacy  of predicting tree grades.

Introduction
Timber markets are difficult to evaluate because of the influence of log species and grade on stand
value. In the southern Appalachians, prices for number 1 grade logs can be six times prices for
number 3 grade logs. This range in value reflects a wide variety of end uses, with one implication
being that typical aggregate market analysis can be difficult  or meaningless. However, while
aggregate production quantities hold little meaning, there is no available source of information on
timber production by grade. This paper describes one method for estimating the tree grades using
standard inventory data. Because tree grades and resulting log grades are closely linked, models of
tree grades could help in improving estimates of stand values and the value of timber removals.

The models developed used data from the United States Forest Service’s Forest Inventory and Analysis
(FIA) Eastwide  Database and relates grades of standing timber to tree and stand characteristics that ate
recorded for removals Because tree grades are discrete and may be considered ordered, an ordered
probit  model was estimated for each of ten species groups (see Table 1) found in the Southern
Appalachian Assessment (SAA) region of the southern Appalachians Results show that the ordered
probit  method improved the probability of correctly predicting the grade of particular trees, although
the percentage improvement over proportional, or naive, approaches for some species groups was
small.

The estimated equations could be useful for incorporating tree grade into stand-level optimization
models (e.g., those of Buongiomo ef al. (1994, 1995),  Haight et al. 1992), enabling more precise
predictions of the economic implications of alternative management strategies Further, differing
parameter estimates acre species groups indicate that different stand structures and species mixes
imply different product outputs.

kesearch  Economist, USDA Forest Service, Southern Research Station, Forestry Sciences
Laboratory, F&search  Triangle Park, NC 27709. Paper  presented at the 1996 Southern Forest Economics
Workshop, Gatlinburg,  Tennessee, March 27-29.
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The Model

Methods

Standing sawtimber of all species in the eastern United States is graded in the periodic forest surveys
conducted by the USDA Forest Service, using the following criteria (Hansen ef al. 1992): trees are
graded using the methods described in Schroeder ef al. (1968),  Brisbin and Sonderman (1971),  and
Hanks (1976), applying grades of 1,2, or 3 to the 16-foot butt logs of sawtimber trees. These models
were developed in order to more accurately predict the grades of lumber and logs obtainable from
trees, based on tree characteristics. A grade of 4 in the Forest Service’s Eastwide Database, which was
used in this study, was assigned to sawtimber-size  trees that contained a gradeable butt log but did not
meet grade 3 standards, and a grade of 5 was given to trees of sawtimber size that did not contain a
gradeable butt log (Hansen et al. 1992). In FIA, all softwoods with a 9-inch minimum diameter can
be assigned grades, l-3, according to Schroeder et al. (1968),  and Brisbin and Sonderman (197 1).
Hardwood trees are graded according to rules developed by Hanks (1976): grade 1 trees must have a
dbh (diameter at breast height) of 16 inches or greater; grade 2 trees must have a dbh of 13 inches or
greater, and grade 3 trees must meet the minimum grading dbh of 11 inches. Grade 4 and 5 trees
have only the minimum (1 l-inch) diameter requirement. Generally, the higher the number of clear
faces in the first M-foot log, the higher the tree grade, with degrades for factors that cause a departure
from a clear, straight bole.

Little published work exists regarding the relationship between tree grade and inventory variables
One study, KBrkk%nen  and Uusvaara (1982),  examined the factors affecting the quality of young Scats
pine (Pinus syZv&s)  in Finland and found significant relationships to diameter and tree growth rate.

Because species vary widely in their tendency to self-prune and in their form, susceptibility to
pathogens and to damage from weather and to catastrophic events, it is important to model tree grade
by species Within a species, branching and tree form are affected by self-pruning, which is closely
related to the degree of competition among trees; therefore, branching should be related to stand
density. Gn the other hand, competition tends to promote stresses that can lead to pathogen entry and
susceptibility to mechanical damage (Smith 1962, Walker 1980). Smith (1962) states that the rate of
self-pruning is “determined by the initial density of the stand and the vigor of the tree.” Implicit in
this statement is that tree grade should also be related to site quality.

In this research, I hypothesized that the combination of grading characteristics, diameter, straightness,
length of clear bole, and amount of defect, were related to tree species, tree diameter, stand density,
and site quality. While model fitness might be better if growth rate were included, most common
inventory data do not include this among the list of stand or tree variables In this research, these
three variables were measured by dbh in inches, basal area per acre in square feet, and site index in
feet (fiftr  year base), respectively. That is, for a particular tree within a species group,

&ez grade = f(u%mvt~,  ad dens& &e quahlty) (1)

Important features of the dependent variable in (1) are that it is discrete and that it could be
characterized as ordered This variable is discrete because it can only take on a limited number of
integer values It could be considered as ordered because a grade 2 tree has fewer branches and is
straighter and less defective than grade 3, and a grade 1 tree has even fewer branches and is straighter
and less defective than grade 2. These features suggested the ordered probit model (see Greene 1990)
as one possible method for estimating the relationship between grade and characteristics of the tree and
the stand.
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The ordered probit  model requires the specification of a latent variable, y*, which is related in some
fashion to a set of right-hand-side variables contained in a vector x. The value of y* determines the
region of maximum frequency in the normal distribution of each grade. That is,

r* = f&P) + c (2)

y=l

y=2

y=3

y=4

if y* x0,

if O~Y'<cIp

if CL1 ~;*<l$

if Y'w2

The p’s in (3) are estimated along with the parameters, p, in equation (2). Assuming that the
unexplained variations around grades are normally-distributed, we have:

Prob ly= l] = @(-plx),

and

(3)

(4)

where Qi is the cumulative distribution function of the normal distribution.

In estimating equations such as those implied by (1) and (Z), species were grouped as shown in Table
1. In order to allow some flexibility in the relationships between grade and the chosen explanatory
variables, I estimated a quadratic functional form of the right-hand-side  variables, including squares
and interactions of variables The models assumed that the variance of regression of each species
group’s equation was heteroscedastic, that is, an exponentially linear function of dbh, basal area per
acre, and site index. In some cases, too few observations and (or) too little variation in the dependent
variable prevented convergence of estimates in iterative maximum likelihood estimation. This was a
common situation for species groups with few observations and for hardwoods smaller than 16 inches
dbh. In these situations, quadratic terms were not included, and homoscedastic covariance matrices
were estimated

Equations specified for white pine were exactly as described above. For southern pines, no grade 4
trees were contained in the sample, and for the grouping “other softwoods,” no grade 1 trees were
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Table 1. Summary statistics for variables used in model estimation.

Species Group Variable Minimum Maximum Mean

a. Southern pine
(n=3,149)

DBH (inches) . . . . . . 9.0 28.5 12.2
BA/acre  (ft’) . . . . . . 8.0 240.0 106
Site index (50) . . . . . 30 99 68

b. White pine
(n=lJ52)

DBH (inches) . . . . . . 9.0 36.9 16.7
BA/acre  (f?) . . . . . . 23 248 129
Site index (SO) . . . . . 30 99 77

c. Hemlock
(n=349)

D B H  (iiches) . . . . . . 9.0 43.8 17.5
BA/acre  (ft?) . . . . . . 8 240 133
Site index (50) . . . . . 40 99 76

d Other softwood
(n=43)

D B H  (mches)  . . . . . . 9.0 16.3 11.8
BA/acre  (ft!) . . . . . . 15 188 108
Site index (50) . . . . . 50 99 62

e. Select white oak
(n= 1,562)

D B H  (iiches) . . . . . . 11.0 49.5 16.7
BA/acre  (ft’) . . . . . . 8 240 103
Site index (50) . . . . . 40 99 69

f. Select red oak
(n=l,578)

DBH (inches) . . . . . . 11.0 51.1 18.9
BA/acre  (f?) . . . . . . 15 218 115
Site index (50) . . . . . 30 99 71

g. Other oak
(n=4,906)

D B H  (imches)  . . . . . . 11.0 52.7 16.5
BA/acre  (f?) . . . . . . 8 225 105
Site index (50) . . . . . 30 99 67

h Soft maple
(n=833)

D B H  (inches)  . . . . . . 11.0 35.9 15.0
BA/acre  (f?) . . . . . . 8 225 111
Site index (50) . . . . . 40 99 75

i. Yellow-poplar
(n=2,685)

DBH (inches) . . . . . . 11.0 37.0 16.4
BA/acre  (f?) . . . . . . 8 240 120
Site index (50) . . . . . 40 99 85

j. Other hardwood
(n=3,054)

DBH (inches) . . . . . . 11.0 40.6 16.1
BA/acre  (ft’) . . . . . . 8 240 111
Site index (50) . . . . . 40 99 76

contained in the sample. Further, for hardwoods, grading rules state that trees greater than or equal to
13 inches but less than 16 inches dbh could not be classed as grades 1. Pot these species groupings,
slightly abbreviated forms of equations (2)-(5) were used, each of which allowed only three possible
grades F!inally, for hardwoods greater than or equal to 11 inches but less than 13 inches dbh, grading
rules allowed no grade 1 or grade 2 classifications. In these cases, a simple binary choice (probit)
model applied, with the choice being either a grade 3 tree or a grade 4 tree.



Figure 1. The  Southern Appalachian Assessment Region.

Data
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‘Ihe data used (Table 1) to estimate these equations were derived from tree and plot records gathered
from the southern Appalachians (see Figure 1) during state FIA surveys of 1986-1992.  No distinction
was made by ownership of the land where trees were sampled. Only trees that were graded and had
complete data on dbh and associated plots with measured basal area and site index were used. As
well, residual trees growing on plots that had been cut since the previous FIA survey  were  not
included in the estimation, because these sites could have had basal areas that were substantially lower
than the basal area prevalent during the development of the graded tree, and no old basal area data
were available in the E&wide database. Overall, 19,511 tree records and 2,722 associated plot
records were used.

Methodological Issues
Important issues considered when modeling tree grade included the selection of explanatory variables,
initial hypotheses as to how these variables are related to tree grade, and how to measure modeling
success. In selecting explanatory variables, I considered standard theory in forest management (see
Smith (1962) and Davis (1966)). In general, because tree  grade is measured according to tree form,
diameter, branchiness, and defect, it is reasonable to assume that factors affecting these variables
would adequately explain tree grades Diameter is a limiting factor in determining grade. It is widely
accepted that stand density plays an important role in encouraging many species of trees to self-prune.
If site index causes a faster growth rate, then, given self-pruning, the faster that a tree grows, the more
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quickly it can overcome the effects of externally-caused mechanical damage and the more quickly it
can grow over branch stubs

Each of the selected variables may have ambiguous effects on tree grade, however:
(i) While diameter is probably positively related to the length of clear bole and the number of

clear faces on a stem, as a tree ages (gets larger), there is a greater chance that it has been
subjected to pathogenic damage and other kinds of random mechanical damage during its life.

(ii) Although denser stands promote self-pruning and etiolation, the denser the stand, the greater the
potential for stress from competition and the greater the likelihood that pathogens are passed
from tree to tree. .

(iii) Even if stand and tree vigor are related to site quality and thus to site index, site index is
measumd  by FIA by taking the height of the three tallest dominant or codominant trees and
comparing them with their ages. ‘Ihis  measure might not correspond directly with tree vigor or
even the species in question. For example, if a particular tree was not part of this site index
measurement, it might have been among the trees in a stand that have been suppressed by the
taller trees; such a suppressed  tree might have stem form and other characteristics that cause a
lower quality tree grade. Further, the height of, say, the tallest yellow-poplars in a stand may
not correlate well with the heights of associated species or may in fact correlate negatively with
them.

Functional form is determined by the dependent variable and by hypothesized relationships between it
and explanatory variables. Considering the conflicting forces associated with each of the selected
explanatory variables, the quadratic form should capture U-shaped and inverse-U-shaped relationships

Many measures of data fitness to discrete dependent variable models have been developed (see
Mad&la  (1983), Judge et aL (1985), and Greene (1990) for descriptions of a few). An obvious and
common measure is the percentage of correct predictions. This can be compared to the percentage of
correct predictions obtained using some naive model (e.g., sample proportion for each grade).
Combining these two, we have the increase in absolute percentage of correct predictions Gall this the
fitness improvement index (FJI):

where C,,,  is the number of correct predictions obtained using
number of correct predictions assuming sample proportions.

the estimated model and C, is the

Other measures of success in maximum likelihood involve likelihood criteria. One is the likelihood
ratio test, with the criterion distributed &i-squared  (k-l). This essentially tells whether the right-hand-
side variables significantly explain any variation:

x~=-2(lnLo-ln.L) (7)

where z is the log-likelihood of the estimated equation and L, is the log-likelihood of a model with
only the intercept on the right-hand-side. Another criterion for model success is the likelihood ratio



index (Greene 1990):
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(8)

This is analogous to the Rz of OLS, being bounded between zero and one, with higher values meaning
a better fit of the data to the predicted values.

Gften, maximum likelihood ordered probit  model appears to predict in a biased fashion, with some
categories of the dependent variable correctly predicted with much higher frequency than others.
Maximum likeliiood  estimation maximizes the joint density of the observed dependent variables and
not some fitting criterion, as in least squares. Thus,  successful prediction rates may vary greatly
among the different levels of the dependent variable. For example, if most trees are grade 3, then the
estimated model may predict grade 3 trees well but other grades poorly. This means that the estimated
model may have limited usefulness if one modeling objective were success in predicting, say, grade 1
trees

Results
Equation Estimates
Estimation results are presented in Tables 24. Table 2 reports estimates for all softwood categories
and hardwood categories for trees greater than or equal to 16 inches dbh. Gnly  a subset of the
equatior&  coefficients were statistically signifkant in explaining variation in tree grades In all models
where a full quadratic specification was possible, at least one squared or interaction term was
statistically different from zero at 5 percent significance. That  is, it appears that the relationship
between the stand- and tree-level variables with tree grade was more complex than a simple linear
model. Linear terms were fairly umsktently  signiftcantly  different from zero, with diameter and basal
ama usually negatively signed, and with site index taking either positive or negative signs, depending
on the species group. Note that a negative coeffkient means that an increase  in an explanatory
variable correlated with a decrease in tree grade number (i.e., higher tree quality). For models of
smaller-diameter hardwood trees, most explanatory variables were statistically significantly related to
tree grade, though the magnitudes and signs of the estimated coefficients revealed significant
differences among species groups

Model Fitness
Tables 5-8 summarize predictive success of the estimated models Log-ratio indices showed generally
low predictive power, with indices mainly less than 0.10. But log ratio tests, measured using a
criterion distributed chi-squared, showed that the chosen explanatory variables did signilicantly  explain
grades, illustrating why it might be misleading to rely on one measure to evaluate success. Only a few
estimated equations had statistically insignificant log ratio tests Models usually had a correct
prediction rate of between 50 and 75 percent. As Table 8 shows, grade 3 trees, the most common tree
grade for all species groups, were most accurately predicted. A majority of models were not as
accurate in identifying trees of grades 1,2 or 4. These grades were usually not detected and were thus
lumped in with the truly grade 3; the result was over-prediction of the proportion of trees in grade 3
Tables 5-7 reveal that the percentage increase in succeszful  predictions over a naive (proportional)
model was around 10 percent.



Table 2. Estimated quadratic ordered probit  models for prediction of tree grades for softwoods and hardwoods of dbh 2 16 inches in the $
Southern Appalachian mountains.’

species  Graup

a. Soutbem pine . .
(n-3,149)

b. white  pine . . . .
(n-  1,352)

c. Hemlock . . . . . .
(n=349)

Int. D BA SI d BA2 ss D*BA D*SI BA*SI

4.68 -0.13 -3.5&-3 4.96e-2 6.50a3 4.56e-5 7.3Oe-4 -2.37e-4 -1.9&-3 -1.06e-4
(1.32) (0.09) (6.76e-3)  (2.45e-2)  (3.03e-3)  (2.4le-5)  (2.78e-4)  (3.63e-4)  (l.l6e-3) (8.9Oe5)

** * * **

6.28 -0.29 -3.43e-2 3.27e-2 4.73e-3 5.71e-5 -2.29e4 6.5Oe4 -6.99e-4 8.26e-5
(1.97) ( 0 . 0 9 3 )  ( l  .  l O e - 2 )  (2.82e-2)  (1.77e-3)  (2.75e-5)  (2.02e-4)  (2.86e-4)  (7.03e-4)  (1.07e4)

** ** ** **

11.71 -0.334 -1.27e-2 2.35e-2
(4.40) ( 0 . 1 3 3 )  (7.30e-3)  (1.72e-2)

* *

PI P2

0.91 _
(0.26)

**

5.321
(Z) (1.066)

** **

0.88 2.07
(0.22) (0.52)

** **

d. other softwood . 31.28 -0.925 -0.013 -0.113 21.57
(n=43) (100.5) (3.30) (0157) (0.46 1) (59.61)

e. Select white  oak
(n-733)

f. Select red oak . .
(n-1,013)

1.29
(0.43)

**

7.97
0.58)

**

8.51e-3  (8.97e-2)  -l.Me-2
(8.97e-2)  (l.O8e-3)  (3.81e-3)

**

-3.1 le2 -2.5Oe-2 -l.l8e-1 Z.lOe-3 4.81e-5 5.43e4 4.68e4 -6.87e-3 2.98e-4
(1.0761)  (1.29e-2)  (3.7Oe-2)  (1.82e-3)  (4.13e-5)  (2.14e-4)  (4.04e-3)  (7.62e-3)  (1.3Oe4)

* ** l *

0.88 9.32
(0.84) (1.76)

** **

1.63 3.71
(0.4 1) (0.91)

** *t

g. other oak , . . . . 6.61 -0.25 8.9563 -3.26e-2 551e-3 -5.76e.-5 252e-4 2.26e4 -7.8&4 -6.24e-5  2.06 4.83
(n-2,254) (2.01) (0.11) (l.l8e-2) (2.88e-2)  (2.33e-3)  (3.39e-5)  (1.78e-4)  (4.17e-4)  (8.71e-4)  (1.05e4) (0.30) (0.68)

** * l *t l * **

h Soft maple . . . . 2.07 0.016 -3.52e-3 4.12e-3 1.14 2.60
(n-257) (0.62) ( 0 . 0 2 4 )  (1.86e-3)  (4&e-3) (0.14) (0.16)

** ** **

i. Yellow-poplar . .
(n-1.274)

2.73 -5.2Oe-2 -2.39e-3 -9.7&-2 3.73
(1.07) (Z&e-2)  (1.76e-3)  (5.52e3) (1.22)

* l ** **

j. Other hardwood.
(n=  1,270)

8.11
(3.70)
l

-0.14
(0.18)

1.33e-3 -9.73e-2 -2.87e-4 4.15e-5  6.9Oe4 6.43e-4 4.8Oe-3 -3.34e4
(1.36e2)  (5.21e-2)  (3.13e-3)  (3.57e-5)  (2.86e-4)  (5.68e-4)  (1.39e-3)  (1.47e-4)

** *

1.87 4.21
(0.4) (1.02)

** **

‘D=Diameteq  BA-Basal  area per acre, in square feet; SI=Site  index, 50 year basis. Two astexisks  indicate significance at l%, one asterisk 5%.
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Table 3. Ektimated  ordered probit  models for prediction of tree grades for hardwoods of dbh greater
than or equal to 13 inches and less than 16 inches in the Southern Appalachian mountains.’

species  Group IllC D BA SI h
a. Selectwhiteoak . . . . 63.19 -3.91 -361e2 2.85e-3 20.20

(n-499) (57.83) (3.60) (3.95e-2) (5.95*2) (17.51)

b .  Selectredoak  .I....

(n-337)
5.70 0.33 -1.63e-3 -932&3 2.11

(1.14) (0.08) (2.17e-3) (4.87&3) (0.15)
** ** **

c. otllexoak . . . . . . . . .
(n-1302)

d. Soft maple . . . . . . . .
(n-278)

e. Yellow-poplar . . . . . .
(n-882)

f. other hardwood . . . . .
(n-1,001)

30.46 -1.46 -2.42&2 -3.W2 13.05
(15.96) (0.80) (1.438-2) (2.508-2) (6.40)

* *

2.49 -7.7 le2 -4.79tF3 1.7oe-3 1.82
(1.23) (8.17e2) (232e-3) (5 Me-3) (0.11)

* * **

4.11 -0.25 -1.316-2 -4.578-3 1.58
(0.75) (0.05) (l&2) (3.71*3) (0.07)

** **

26.25 -1.37 -l&+3 -1.66e-2 11.35
(17.00) (0.91) (1.018-2) (2218-2) (6.88)

’ D-Diameter; BA-Basal area per acre, in square  feet; SI-Site index, 50 year basis. Two asterisks indicate statistical
signifmnce  at 196,  one asterisk 5%.

Table 4. Estimated probit  models for prediction of tree grades for hardwoods of dbh greater than or
equal to 11 inches and less than 13 inches in the Southern Appalachian mountains’

Species Group

a Selectwbiteoak  . . . .
(n-330)

Int. D BA SI

a.10 3.528-3 -225e-2
(230) (3.458-2) (236e-1)

b. Selectredoak . . . . . .
(n-228)

-9.608-2 -3.858-3 -3.558-3
(2.1oe-1) (3.9%3) (8.8Oe-3)

c. Gthtxoak  . . . . . . . . .
(n-1,150)

d. Softmaple . . . . . . . .
(n=298)

1.71 -1.17 -5.17e-3 -4.0764
(O-94) (0.08) (1.546-3) (3-3)

l l *

1.40 -0.19 -1548-3 235e3
(1.82) (0.15) (2.428-3) (6.128-3)

e. Yellow-poplar . . . . . .
(n-579)

0.09
(1.57)

-8.56e-2
(1.3&l)

- 1.67e3
(2.12e-3)

-2.458-3
(6.48e-3)

f. Other hardwood . . . . .
(n-783)

931 -1.39 -5.15e-2 0.10
(28.68) (3.73) (1.1%1) (0.22)

* D-Diameter;  BA-Ehsal  area per am. in square feet; SI-Site  index, 50 year  bask ‘ho asterisks indicate  statistical
significance at l%, one asterisk 5%.
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Table 5. Goodness of fit measures for estimated species group models, dbh r 16 inches

Species Group
Log-Patio

Index chi-squared
Percent Correct Fit Improvement

Predictions Index

a. Southern pine . . .
(n-3,149)

0.04 174** 74.7 15.2

b. White pine . . . . . 0.08 205** 59.0 12.7
(n= 1,352)

c. Hemlock. . . . . . . 0.15 105* 63.0 17.6
(n=349)

d Other softwood . . 0.18 8 86.1 11.0
(n=43)

e. Select white oak . 0.01 23 44.3 13.0
(n=733)

f. Selectredoak. . . 0.03 79** 42.5 9.7
(n=1,013)

g. Other oak . . . . . . 0.02 112** 43.2 10.1
(n=2254)

h Soft maple . . . . . 0.02 9 52.3 15.3
(n=256)

i. Yellow-poplar . . . 0.01 20* 41.3 8.3
(n= 1,274)

j. Other hardwood .
(n=lJ70)

0.02 70** 42.8 10.1

There are several possible explanations for why these models were only modestly better than
proportional models in predicting tree grades Probably very important was the omission of variables
describing genetics and stand histories. Genetic factors, aside from interspecies  variations, are not easy
to model. Stand history variables were omitted, even though some were available from J?IA. But one
of the goals of this research was to use commonly-gathered inventory data to help predict tree grades

Conclusions
Tree grades are based upon the grades of logs and lumber obtained upon harvest and wood product
manufacture. If more successful models of tree grades can be estimated, then more precise estimates
of stand values by grade can be developed Results of tree grade model estimation presented here for
southern Appalachian trees and associated stands indicate that tree grades can be statistically
significantly predicted Estimation revealed important differences among species, so it is important to
recognize species when modeling tree grade. Model form was adequately explained using a Iinear
right-hand-side functional form of explanatory variables, although some species groups showed more
complex, nonlinear relationships. While the explanatory powers of estimated models were not high,
research uncovered statistically significant relationships between tree quality and diameter, basal area,
and site index. Several model fitness criteria were used to evaluate the success of this modeling, and,



Table 6. Goodness of fit measures for estimated species group models, 13 5 dbh < 16 inches.

Species Group
Log-Ratio

Index chi-squared
Percent Correct

Predictions
Fit Improvement

Index
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a. Select white oak .
(n=499)

0.04 37** 57.7 15.9

b. Select red oak . . .
(n=337)

0.08 41** 63.2 15.6

c. Other oak . . . . . . 0.03 69** 61.2 14.9
(n=l,SOZ)

d Soft maple . . . . . 0.01 6 63.0 16.4
(n=278)

e. Yellow-poplar . . . 0.02 33** 56.4 12.0
(n=832)

f. Other hardwood . . 0.02 39** 58.4 14.5
(n=l,OOl)

Table 7. Goodness of fit measures for estimated species group models, 11 s dbh < 13 inches.

Species Group
Log-Ratio

Index chi-squared
Percent Correct

Predictions
Fit Improvement

Index

a. Select white oak . 0.02 8 80.9 11.8
(n=330)

b. Select red oak . . . 0.01 1 91.2 7.2
(n=228)

c. Other oak . . . . . . 0.02 17** 81.7 11.6
(n=1,150)

d Soft maple . . . . . 0.01 2 78.9 12.2
(n=298)

e. Yellow-poplar . . . 0.00 2 90.7 7.6
(n=579)

f. Other hardwood . . 0.02 16* 82.1 11.8
(n=783)
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Table 8. Percentage of individual softwood trees at least 9 inches dbh and hardwpod  trees at least 11
inches dbh with correctly predicted tree grades,  based  on the models shown in Tables 2-4,
versus  naive predictions of grades.

Sue&s Grout Predictor Grade 1 Grade 2 Grade 3 Grade 4 All Grades

a. Southern Pines Models . . . 0.0 0.0 100.0 NA 74.7
(n=3,149) Naive . . . . . 7.6 17.7 74.7 NA 59.5

Difference . -7.6 -17.7 25.3 NA 15.2

b. White Pine Models . . . 0.0 4.4 95.5 0.0 59.0
(n=1,352) Naive . . . . . 8.7 30.1 60.4 0.7 46.3

Difference . -8.7 -25.7 35.0 -0.7 12.7

c. Hemlock Models . . . 34.3 10.0 91.7 0.0 63.0
(n=349) Naive . . . . . 10.0 22.9 62.5 4.6 45.5

Difference . 24.3 -12.9 29.3 -4.6 17.5

d Other Softwoods Models . . . NA 0.0 100.0 0.0 86.0
(n=+3) Naive . . . . . NA 7.0 86.0 7.0 75.0

Difference . NA -7.0 14.0 -7.0 11.0

e. Select White Oak Models . . . 0.0 49.9 82.0 0.0 56.3
(n-1,562) Naive . . . . . 19.8 34.9 57.3 13.3 42.7

Difference . -19.8 15.0 24.8 -13.3 13.7

f. Select Red Oak Models . . . 21.9 73.0 56.7 0.0 53.9
(n=1,578) Naive . . . . . 28.8 41.4 54.6 4.9 43.3

Difference . -6.9 31.6 2.0 -4.9 10.6

g. Other Oaks Models . . . 2.8 7.8 96.3 0.0 57.7
(n=4,906) Naive . . . . . 14.0 31.6 61.9 13.0 45.8

Difference . -11.2 -23.9 34.4 -13.0 11.9

h Soft Maples Models . . . 0.0 0.0 100.0 0.0 65.4
(np832) Naive . . . . . 5.1 21.6 67.2 20.0 50.8

Difference . -5.1 -21.6 32.8 -20.0 14.5

i. Yellow-Poplar Models . . . 45.9 65.6 61.0 0.0 56.6
(n=2,685) Naive . . . . . 36.4 43.4 59.7 6.6 47.3

Difference . 9.5 22.2 1.3 -6.6 9.3

j. Other Hardwoods Models . . . 4.4 4.5 97.3 1.0 58.0
(n=3,054) Naive . . . . . 14.3 31.3 62.2 13.0 46.0

Difference . -9.9 -26.7 35.1 -12.8 12.0

in my opinion, significant improvements in tree grade estimation success were attained This success
may have implications for timber supply and stand optimization modeling.

Nonetheless, modeling left unexplained a large proportion of variation in tree  grades, and substantial
apparent bias was associated with the models. The estimated equations were only modestly better than
proportional, or naive, models in predicting tree grades, and this was probably because of omitted
variables, possibly stand history and genetic factors The biases of these models, that grade 3 trees
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were over-predicted and that other grades were under-predicted, might have been expected from
maximum likelihood estimation, given its maximization criterion. Constraining the maximum
likelihood model to better predict less common grades would inevitably result in poor model
prediction success as measured by the fitness  criteria that we described. However, perhaps some
value-weighted model, which put more weight on correctly predicting much higher-value number 1
and 2 grade trees, could be more successful if fitness were viewed from a financial or economic
perspective.
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